3. MEASUREMENT ON VOLTAGE DIVIDER

3.1. Tasks of the measurement

3.1.1. Measure the output voltage U_2 of the resistive divider consisting of ten resistors of the same value for all division ratios d by means of:

 a) a DVM (digital voltmeter),
 b) a PMMC voltmeter (on 12 V measurement range).

Plot both the U_2/U_1 vs d curves in a common graph and explain the differences. The input voltage of the divider (U_1) should be 10 V.

3.1.2. Calculate the divider output resistance R_D from the measured values for the given division ratio d. Suppose the DVM input resistance be infinite.

3.1.3. Calculate the expanded uncertainty of type B (coverage factor $k = 2$) of the evaluated divider output resistance supposing that the input resistance tolerance of the PMMC voltmeter is less than 0.2 %.

3.2. Schematic diagram

![Schematic Diagram](image)

3.3. List of the equipment used

- **V** - PMMC voltmeter, accuracy class: ..., voltage range: ...
- **DV** - digital voltmeter, model: ..., accuracy ...
- **U_1** - DC power supply, model: ...

3.4. Theoretical background

If the output voltage of a resistive voltage divider is measured by a voltmeter the input resistance of which is comparable to the resistance of the divider, the output voltage U_2 is significantly lower than the corresponding output voltage of the unloaded divider U_0 (Fig. 3.2a).
The real divider powered from DC voltage source U_1 and loaded by voltmeter with input resistance R_V according to Fig. 3.2b can be substituted (using Thevenin theorem) in series connection of DC voltage source U_0 and resistor R_D according to the Fig. 3.2c.

Voltage U_0 is equal to the output voltage of unloaded divider and the resistance R_D is given as parallel combination of divider resistors R_1 and R_2. Output divider voltage U_2 that is loaded by voltmeter input resistance R_V is given as

$$U_2 = U_0 \frac{R_V}{R_V + R_D} \quad (3.1)$$

where R_D is output divider resistance.

Voltmeter connection causes a methodical error of the following value

$$\Delta U_{\text{met}} = U_2 - U_0 = U_0 \frac{R_V}{R_V + R_D} - U_0 = U_0 \left(\frac{R_V}{R_V + R_D} - 1 \right) = U_0 \frac{-R_D}{R_V + R_D} \quad (3.2)$$

If the voltmeter input resistance is much higher than the output resistance of the measured voltage source (in our case output resistance R_D of the voltage divider), the methodical error is insignificant. Therefore, using digital voltmeter (with input resistance $R_{DV} = 10^9 \, \Omega$) we measure voltage U_{2DV} equal to the voltage value for unloaded divider, $U_0 \approx U_{2DV}$.

Different methods can be used to evaluate output resistance of the divider. One of them is based on schematics in Fig. 3.2c and relation (3.1), where R_D can be evaluated. It gives

$$R_D = \frac{R_V(U_{2DV} - U_2)}{U_2} = R_V \left(\frac{U_{2DV}}{U_2} - 1 \right) \quad (3.3)$$

Another possibility is to start with loading characteristics of the divider (Fig. 3.3), where I_2 is the current passing through the load resistor R_D. Output characteristics is given as absolute value of slope of line:

$$R_D = \left| \frac{U_{2DV} - U_2}{0 - I_2} \right| = \frac{U_{2DV} - U_2}{U_2/R_V} = R_V \left(\frac{U_{2DV}}{U_2} - 1 \right) \quad (3.4)$$
Output resistance measurement uncertainty evaluation

If the fluctuations of measured values for each voltmeter are significantly lower than would correspond to its accuracy declared by its manufacturer (for PMMC voltmeter it is accuracy class, for digital multimeter it is the sum of errors in percent of range and of value), the A-type uncertainty is negligible and it is sufficient to measure voltages U_{2DV} and U_2 (needed for resistance R_D calculations) only once. In the opposite case, each measurement must be repeated several times, average values of U_{2DV} and U_2 must be used instead and corresponding A-type uncertainties must be calculated (see [2]).

In our case where the A-type uncertainties of U_{2DV} and U_2 measurements are negligible and the only sources of B-type uncertainty are inaccuracies of the used voltmeters and tolerance of the value of the input resistance of PMMC voltmeter.

The value of resistance R_D can be calculated using (3.3). Since there is $R_D = f(U_0, U_2, R_V)$, uncertainty of the value of R_D is

$$u_{R_D} = \sqrt{\left(\frac{\partial R_D}{\partial U_{2DV}} u_{U_{2CV}}\right)^2 + \left(\frac{\partial R_D}{\partial U_2} u_{U_2}\right)^2 + \left(\frac{\partial R_D}{\partial R_V} u_{R_V}\right)^2} \quad (\Omega) \quad (3.5)$$

where
- u_{R_D} is resulting standard uncertainty of the R_D (Ω),
- $u_{U_{2DV}}$ standard uncertainty of measurement of U_{2CV} (V),
- u_{U_2} standard uncertainty of measurement of U_2 (V),
- u_{R_V} standard uncertainty of value of R_V (Ω).

After evaluating the partial derivations

$$\frac{\partial R_D}{\partial U_{2DV}} = \frac{R_V}{U_2} \quad ; \quad \frac{\partial R_D}{\partial U_2} = -\frac{R_V}{U_2^2} \quad ; \quad \frac{\partial R_D}{\partial R_V} = \frac{U_{2DV} - U_2}{U_2} \quad (3.6)$$

we obtain the resulting standard uncertainty of the value of R_D

$$u_{R_D} = \sqrt{\left(\frac{R_V}{U_2} u_{U_{2DV}}\right)^2 + \left(\frac{R_V}{U_2^2} u_{U_2}\right)^2 + \left(\frac{U_{2DV} - U_2}{U_2} u_{R_V}\right)^2} \quad (\Omega) \quad (3.7)$$

Partial standard uncertainties are evaluated by the following way:

$$u_{U_{2DV}} = \frac{\delta_1 \times U_{2DV} + \delta_2 \times M_{DV}}{100 \sqrt{3}} \quad (V) \quad (3.8)$$

$$u_{U_2} = \frac{AC \times M}{100 \sqrt{3}} \quad (V) \quad (3.9)$$
\[u_{RV} = \frac{\delta_{RV} \times R_V}{100 \sqrt{3}} \quad (\Omega) \quad (3.10) \]

where \(\delta_1 \) is error in percent of digital voltmeter reading,

\(\delta_2 \) error in percent of digital voltmeter full-scale range,

\(M_{CV} \) selected measurement range of the digital voltmeter (V),

\(AC \) accuracy class of the PMMC voltmeter (%),

\(M \) measuring range of the PMMC voltmeter (V),

\(\delta_{RV} \) resistor \(R_V \) tolerance (%).

Extended uncertainty \(U_{RD} \) of resistor \(R_D \) evaluation is obtained by multiplication of standard uncertainty by the coverage factor \(k \) (usually \(k = 2 \)), it means \(U_{RD} = k \, u_{RD} \).